
8.1 指针是什么

8.2 指针变量

8.3 通过指针引用数组

8.4 通过指针引用字符串

8.5 指向函数的指针

8.6 返回指针值的函数

8.7 指针数组和多重指针

8.8 动态内存分配与指向它的指针变量

8.9 有关指针的小结

Ø如果在程序中定义了一个变量，在对程序进

行编译时，系统就会给该变量分配内存单元

Ø编译系统根据程序中定义的变量类型，分配

一定长度的空间

Ø例如，VC++为整型变量分配4个字节，对

单精度浮点型变量分配４个字节，对字符型

变量分配１个字节

Ø内存区的每一个字节有一个编号，这就是

“地址”，它相当于旅馆中的房间号。

Ø在地址所标识的内存单元中存放数据，这相

当于旅馆房间中居住的旅客一样。

Ø由于通过地址能找到所需的变量单元，我们

可以说，地址指向该变量单元。

Ø将地址形象化地称为“指针”

Ø务必弄清楚存储单元的地址和存储

单元的内容这两个概念的区别

例如：

int i=3,j=6,k;

printf(“%d”,i);

通过变量名i

找到i的地址
2000，从而从存
储单元读取3

int i=3,j=6,k;

k=i+j;

从这里取3

将9送到这里

从这里取6

直接存取

int i=3,j=6,k;

定义特殊变量i_pointer

将i的地址
存到这里

间接存取

i_pointer=&i;

*i_pointer=50;

50

i

2000
3

2000

i_pointer *i_pointer

2000
3

直接存取

间接存取

Ø为了表示将数值３送到变量中，可以有两

种表达方法：

(1) 将3直接送到变量i所标识的单元中，例

如：i=3;
(2) 将3送到变量i_pointer所指向的单元

（即变量i的存储单元），例如：

*i_pointer=3; 其中*i_pointer表示

i_pointer指向的对象

Ø指向就是通过地址来体现的

u假设i_pointer中的值是变量ｉ的地址

(2000)，这样就在i_pointer和变量ｉ之间

建立起一种联系，即通过i_pointer能知道i
的地址，从而找到变量i的内存单元

Ø由于通过地址能找到所需的变量单元，因

此说，地址指向该变量单元

Ø将地址形象化地称为“指针”。意思是通

过它能找到以它为地址的内存单元

Ø一个变量的地址称为该变量的“指针”

例如，地址2000是变量ｉ的指针

Ø如果有一个变量专门用来存放另一变量的

地址（即指针），则它称为“指针变量”

Øi_pointer就是一个指针变量。指针变量

就是地址变量，用来存放地址的变量，指

針变量的值是地址（即指针）

Ø“指针”和“指针变量”是不同的概念

Ø可以说变量i的指针是2000，而不能说i的
指针变量是2000
Ø指针是一个地址，而指针变量是存放地址

的变量

8.2.1使用指针变量的例子

8.2.2 怎样定义指针变量

8.2.3 怎样引用指针变量

8.2.4 指针变量作为函数参数

例8.1 通过指针变量访问整型变量。

Ø解题思路：先定义2个整型变量，再定

义2个指针变量，分别指向这两个整型

变量，通过访问指针变量，可以找到它

们所指向的变量，从而得到这些变量的

值。

#include <stdio.h>
int main()
{ int a=100,b=10;
 int *pointer_1, *pointer_2;
 pointer_1=&a;
 pointer_2=&b;
 printf(“a=%d,b=%d\n”,a,b);
 printf(“*pointer_1=%d,*pointer_2=
 %d\n”,*pointer_1,*pointer_2);
 return 0;
}

定义两个指针变量

使pointer_1指向a使pointer_2指向b直接输出变量a和b的值

间接输出变量a和b的值

#include <stdio.h>
int main()
{ int a=100,b=10;
 int *pointer_1, *pointer_2;
 pointer_1=&a;
 pointer_2=&b;
 printf(“a=%d,b=%d\n”,a,b);
 printf(“*pointer_1=%d,*pointer_2=
 %d\n”,*pointer_1,*pointer_2);
 return 0;
}

此处*与类型名在一起。
此时共同定义指针变量

此处*与指针变量一起使用。此
时代表指针变量所指向的变量

Ø定义指针变量的一般形式为：

 类型 * 指针变量名;
如：int *pointer_1, *pointer_2;
uint是为指针变量指定的“基类型”

u基类型指定指针变量可指向的变量类型

u如pointer_1可以指向整型变量，但不能指

向浮点型变量

Ø下面都是合法的定义和初始化：

float *pointer_3;
char *pointer_4;
int a,b;
int *pointer_1=&a,*pointer_2=&b;

*pointer_1＝&a; 错误pointer_3＝&a; 错误pointer_1＝&a; 正确pointer_3＝2000; 错误

Ø在引用指针变量时，可能有三种情况：

u给指针变量赋值。如：p=&a;
u引用指针变量指向的变量。如有

 p=&a; *p=1;
 则执行printf(“%d”,*p); 将输出1
u引用指针变量的值。如：printf(“%o”,p);

使p指向a

*p相当于a

以八进制输
出a的地址

Ø要熟练掌握两个有关的运算符：
(1) ＆ 取地址运算符。

 &a是变量a的地址

(2) * 指针运算符（“间接访问”运算符）

 如果： p指向变量a，则*p就代表a。
 k=*p; (把a的值赋给k)
 *p=1; (把1赋给a)

 例8.2 输入a和b两个整数，按先大后小的

顺序输出a和b。
Ø解题思路：用指针方法来处理这个问题。

不交换整型变量的值，而是交换两个指针

变量的值。

#include <stdio.h>
int main()
{ int *p1,*p2,*p,a,b;
 printf(“integer numbers:");
 scanf(“%d,%d”,&a,&b);
 p1=&a; p2=&b;
 if(a<b)
 { p=p1; p1=p2; p2=p; }
 printf(“a=%d,b=%d\n”,a,b);
 printf(“%d,%d\n”,*p1,*p2);
 return 0;
}

a

b

p1

p2

p 5

9

&a

&b

成立

#include <stdio.h>
int main()
{ int *p1,*p2,*p,a,b;
 printf(“integer numbers:");
 scanf(“%d,%d”,&a,&b);
 p1=&a; p2=&b;
 if(a<b)
 { p=p1; p1=p2; p2=p; }
 printf(“a=%d,b=%d\n”,a,b);
 printf(“%d,%d\n”,*p1,*p2);
 return 0;
}

a

b

p1

p2

p 5

9

&a

&b

&b

&a

#include <stdio.h>
int main()
{ int *p1,*p2,*p,a,b;
 printf(“integer numbers:");
 scanf(“%d,%d”,&a,&b);
 p1=&a; p2=&b;
 if(a<b)
 { p=p1; p1=p2; p2=p; }
 printf(“a=%d,b=%d\n”,a,b);
 printf(“%d,%d\n”,*p1,*p2);
 return 0;
}

a

b

p1

p2

p 5

9

&a

&b

&b

&a

#include <stdio.h>
int main()
{ int *p1,*p2,*p,a,b;
 printf(“integer numbers:");
 scanf(“%d,%d”,&a,&b);
 p1=&a; p2=&b;
 if(a<b)
 { p=p1; p1=p2; p2=p; }
 printf(“a=%d,b=%d\n”,a,b);
 printf(“%d,%d\n”,*p1,*p2);
 return 0;
}

a

b

p1

p2

p 5

9

&a

&b

&b

&a

可否改为p1=&b; p2=&a;？

Ø注意:
ua和b的值并未交换，它们仍保持原值

u但p1和p2的值改变了。p1的值原为&a，后

来变成&b，p2原值为&b，后来变成&a
u这样在输出*p1和*p2时，实际上是输出变

量b和a的值，所以先输出9，然后输出5

 例8.3 题目要求同例8.2，即对输入的两

个整数按大小顺序输出。现用函数处理，而

且用指针类型的数据作函数参数。

Ø解题思路：定义一个函数swap，将指向两

个整型变量的指针变量作为实参传递给

swap函数的形参指针变量，在函数中通过

指针实现交换两个变量的值。

#include <stdio.h>
int main()
{void swap(int *p1,int *p2);
 int a,b; int*pointer_1,*pointer_2;
 printf("please enter a and b:");
 scanf(“%d,%d”,&a,&b);
 pointer_1=&a;
 pointer_2=&b;
 if (a<b) swap(pointer_1,pointer_2);
 printf(“max=%d,min=%d\n”,a,b);
 return 0;
 }

a bpointer_1
5 9&a &b

pointer_2

void swap(int *p1,int *p2)
{ int temp;
 temp=*p1;
 *p1=*p2;
 *p2=temp;
}

a bpointer_1
5 9&a &b

pointer_2

p1 &a p2 &b

9 5

void swap(int *p1,int *p2)
{ int temp;
 temp=*p1;
 *p1=*p2;
 *p2=temp;
}

void swap(int *p1,int *p2)
{ int *temp;
 *temp=*p1;
 *p1=*p2;
 *p2=*temp;
}

错！！！
无确定的指向

#include <stdio.h>
int main()
{……
 if (a<b) swap(a,b);
 printf(“max=%d,min=%d\n”,a,b);
 return 0;
 }
void swap(int x,int y)
{ int temp;
 temp=x; x=y; y=temp;
}

错！！！
无法交换a,b

a b
5 9

x y
5 99 5

Ø如果想通过函数调用得到ｎ个要改变的值：

① 在主调函数中设ｎ个变量，用ｎ个指针变量指
向它们

② 设计一个函数，有n个指针形参。在这个函数
中改变这ｎ个形参的值

③ 在主调函数中调用这个函数，在调用时将这n
个指针变量作实参，将它们的地址传给该函数
的形参

④ 在执行该函数的过程中，通过形参指针变量，
改变它们所指向的ｎ个变量的值

⑤主调函数中就可以使用这些改变了值的变量

例8.4 对输入的两个整数按大小顺序输出。

Ø解题思路：尝试调用swap函数来实现题

目要求。在函数中改变形参(指针变量)的
值，希望能由此改变实参(指针变量)的值

#include <stdio.h>
int main()
 {void swap(int *p1,int *p2);
 int a,b; int*pointer_1,*pointer_2;
 scanf("%d,%d",&a,&b);
 pointer_1=&a; pointer_2=&b;
 if (a<b) swap(pointer_1,pointer_2);
 printf("max=%d,min=%d\n",a,b);
 return 0;
 } void swap(int *p1,int *p2)

{ int *p;
 p=p1; p1=p2; p2=p;
}

错！！！
只交换形参指向

Ø注意：函数的调用可以（而且只可以）得

到一个返回值（即函数值），而使用指针

变量作参数，可以得到多个变化了的值。

如果不用指针变量是难以做到这一点的。

Ø要善于利用指针法。

 例8.5 输入3个整数a,b,c，要求按由大

到小的顺序将它们输出。用函数实现。

Ø解题思路：采用例8.3的方法在函数中改

变这3个变量的值。用swap函数交换两

个变量的值，用exchange函数改变这

3个变量的值。

#include <stdio.h>
int main()
{ void exchange(int *q1, int *q2, int *q3);
 int a,b,c,*p1,*p2,*p3;
 scanf("%d,%d,%d",&a,&b,&c);
 p1=&a;p2=&b;p3=&c;
 exchange(p1,p2,p3);
 printf(“%d,%d,%d\n",a,b,c);
 return 0;
}

调用结束后不会
改变指针的指向

void exchange(int *q1, int *q2, int *q3)
{ void swap(int *pt1, int *pt2);
 if(*q1<*q2) swap(q1,q2);
 if(*q1<*q3) swap(q1,q3);
 if(*q2<*q3) swap(q2,q3);
}
void swap(int *pt1, int *pt2)
{ int temp;
 temp=*pt1; *pt1=*pt2; *pt2=temp;
 }

交换指针指
向的变量值

8.3.1 数组元素的指针

8.3.2 在引用数组元素时指针的运算

8.3.3 通过指针引用数组元素

8.3.4 用数组名作函数参数

8.3.5 通过指针引用多维数组

Ø一个变量有地址，一个数组包含若干元素

，每个数组元素都有相应的地址

Ø指针变量可以指向数组元素（把某一元素

的地址放到一个指针变量中）

Ø所谓数组元素的指针就是数组元素的地址

Ø可以用一个指针变量指向一个数组元素

 int a[10]={1,3,5,7,9,11,13,15,17,19};
 int *p;
 p=&a[0];

等价于p=a;
等价于int *p=a;
或int *p=&a[0];

注意：数组名a不代表整个数组，
只代表数组首元素的地址。“p=a;”
的作用是“把a数组的首元素的地
址赋给指针变量p”，而不是“把
数组a各元素的值赋给p”。

Ø在指针指向数组元素时，允许以下运算：

u加一个整数(用+或+=)，如p+1
u减一个整数(用-或-=)，如p-1
u自加运算，如p++，++p
u自减运算，如p--，--p
u两个指针相减，如p1-p2 (只有p1和p2都

指向同一数组中的元素时才有意义)

(1) 如果指针变量p已指向数组中的一个元

素，则p+1指向同一数组中的下一个元素

，p-1指向同一数组中的上一个元素。

 float a[10],*p=a;
 假设a[0]的地址为2000，则

up的值为2000
up+1的值为2004
uP-1的值为1996 越界

(2) 如果ｐ的初

值为&a[0]，
则p+i和a+i就
是数组元素

a[i]的地址，

或者说，它们

指向a数组序号

为i的元素

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]
a[7]
a[8]
a[9]

p
p+1,a+1

p+i,a+i

p+9,a+9

(3) *(p+i)或
*(a+i)是p+i
或a+i所指向

的数组元素，

即a[i]。

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]
a[7]
a[8]
a[9]

p
p+1,a+1

p+i,a+i

p+9,a+9

*(p+i)

(4) 如果指针p1和p2
都指向同一数组

 p2-p1的值是4

 不能p1+p2

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]
a[7]
a[8]
a[9]

p1

p2

Ø引用一个数组元素，可用下面两种方法：
（１） 下标法，如a[i]形式

 （２） 指针法，如*(a+i)或*(p+i)
 其中a是数组名，p是指向数组元素的指针

变量，其初值p=a

 例8.6 有一个整型数组a，有10个元素，

要求输出数组中的全部元素。

Ø解题思路：引用数组中各元素的值有3种
方法：(1)下标法；(2)通过数组名计算

数组元素地址，找出元素的值；(3) 用指

针变量指向数组元素

Ø分别写出程序，以资比较分析。

(1) 下标法。
#include <stdio.h>
int main()
{ int a[10]; int i;
 printf(“enter 10 integer numbers:\n");
 for(i=0;i<10;i++) scanf("%d",&a[i]);
 for(i=0;i<10;i++) printf(“%d ”,a[i]);
 printf("%\n");
 return 0;
 }

(2) 通过数组名计算数组元素地址，找出元素的值

#include <stdio.h>
int main()
{ int a[10]; int i;
 printf(“enter 10 integer numbers:\n");
 for(i=0;i<10;i++) scanf("%d",&a[i]);
 for(i=0;i<10;i++)
 printf(“%d ”,*(a+i));
 printf("\n");
 return 0;
 }

scanf("%d",a+i);

(3) 用指针变量指向数组元素
#include <stdio.h>
int main()
{ int a[10]; int *p,i;
 printf(“enter 10 integer numbers:\n");
 for(i=0;i<10;i++) scanf("%d",&a[i]);
 for(p=a;p<(a+10);p++)
 printf(“%d ”,*p);
 printf("\n");
 return 0;
}

for(p=a;p<(a+10);p++)
 scanf("%d",p);for(p=a;p<(a+10);a++)

 printf(“%d ”,*a); 错！

Ø3种方法的比较：

① 第(1)和第(2)种方法执行效率相同

uＣ编译系统是将a[i]转换为*(a+i)处理的，

即先计算元素地址。

u因此用第(1)和第(2)种方法找数组元素费时

较多。

Ø3种方法的比较：

② 第(3)种方法比第(1)、第(2)种方法快

u用指针变量直接指向元素，不必每次都重新计

算地址，像p++这样的自加操作是比较快的

u这种有规律地改变地址值(p++)能大大提高

执行效率

Ø3种方法的比较：

③ 用下标法比较直观，能直接知道是第几个

元素。

 用地址法或指针变量的方法不直观，难以

很快地判断出当前处理的是哪一个元素。

 例8.7 通过指针变量输出整型数组a的10
个元素。

Ø解题思路：

 用指针变量p指向数组元素，通过改变指

针变量的值，使p先后指向a[0]到a[9]各
元素。

#include <stdio.h>
int main()
{ int *p,i,a[10];
 p=a;
 printf(“enter 10 integer numbers:\n");
 for(i=0;i<10;i++) scanf(“%d”,p++);
 for(i=0;i<10;i++,p++)
 printf(“%d ”,*p);
 printf("\n");
 return 0;
}

退出循环时p指向a[9]
后面的存储单元

因此执行此
循环出问题

重新执行

p=a;

Ø用数组名作函数参数时，因为实参数组名

代表该数组首元素的地址，形参应该是一

个指针变量

ØC编译都是将形参数组名作为指针变量来

处理的

int main()
{ void fun(int arr[],int n];
 int array[10]; 
 ┇
 fun (array,10);
 return 0;
}
void fun(int arr[],int n)
{ ┇ }

fun(int *arr,int n)

int main()
{ void fun(int arr[],int n];
 int array[10];
 ┇
 fun (array,10);
 return 0;
}
void fun(int *arr,int n)
{ ┇ }

array[0]
arr[0]

array数组

arr

array[3]
arr[3]arr+3

Ø 实参数组名是指针常量，但形参数组名是

按指针变量处理

Ø在函数调用进行虚实结合后，它的值就是

实参数组首元素的地址

Ø在函数执行期间，形参数组可以再被赋值

void fun (arr[],int n)
{ printf(″%d\n″, *arr);
 arr=arr+3;
 printf(″%d\n″, *arr);
}

例8.8 将数组a中n个整数按相反顺序存放

Ø解题思路：将a[0]与a[n-1]对换，……
将a[4]与a[5]对换。

ji

例8.8 将数组a中n个整数按相反顺序存放

Ø解题思路：将a[0]与a[n-1]对换，……
将a[4]与a[5]对换。

ji

例8.8 将数组a中n个整数按相反顺序存放

Ø解题思路：将a[0]与a[n-1]对换，……
将a[4]与a[5]对换。

ji

例8.8 将数组a中n个整数按相反顺序存放

Ø解题思路：将a[0]与a[n-1]对换，……
将a[4]与a[5]对换。

ji

例8.8 将数组a中n个整数按相反顺序存放

Ø解题思路：将a[0]与a[n-1]对换，……
将a[4]与a[5]对换。

ji

#include <stdio.h>
int main()
{ void inv(int x[],int n);
 int i, a[10]={3,7,9,11,0,6,7,5,4,2};
 for(i=0;i<10;i++) printf(“%d ”,a[i]);
 printf("\n");
 inv(a,10);
 for(i=0;i<10;i++) printf(“%d ”,a[i]);
 printf("\n");
 return 0;
}

void inv(int x[],int n)
{ int temp,i,j,m=(n-1)/2;
 for(i=0;i<=m;i++)
 { j=n-1-i;
 temp=x[i];x[i]=x[j];x[j]=temp;

}
} void inv(int x[],int n)

{ int temp,*i,*j;
 i=x; j=x+n-1;
 for(; i<j; i++,j--)
 { temp=*i; *i=*j; *j=temp; }
}

优化

例8.9 改写例8.8，用指针变量作实参。
#include <stdio.h>
int main()
{ void inv(int *x,int n);
 int i, arr[10],*p=arr;
 for(i=0;i<10;i++,p++)
 scanf(“%d”,p);
 inv(p,10);
 for(p=arr;p<arr+10;p++)
 printf(“%d ”,*p);
 printf("\n");
 return 0;
}

不可少！！！

 例8.10 用指针方法对10个整数按由大到

小顺序排序。

Ø解题思路：

u在主函数中定义数组a存放10个整数，定义

int *型指针变量p指向a[0]
u定义函数sort使数组a中的元素按由大到小的

顺序排列

u在主函数中调用sort函数，用指针p作实参

u用选择法进行排序

#include <stdio.h>
int main()
{ void sort(int x[],int n);
 int i,*p,a[10];
 p=a;
 for(i=0;i<10;i++) scanf(“%d”,p++);
 p=a;
 sort(p,10);
 for(p=a,i=0;i<10;i++)
 { printf(“%d ”,*p); p++; }
 printf("\n");
 return 0;
}

void sort(int x[],int n)
{ int i,j,k,t;
 for(i=0;i<n-1;i++)
 { k=i;
 for(j=i+1;j<n;j++)
 if(x[j]>x[k]) k=j;
 if(k!=i)

 { t=x[i];x[i]=x[k];x[k]=t; }
 }
}

void sort(int *x,int n)

if (*(x+j)>*(x+k)) k=j;

{t=*(x+i);*(x+i)=*(x+k);*(x+k)=t;}

Ø指针变量可以指向一维数组中的元素，也

可以指向多维数组中的元素。但在概念上

和使用方法上，多维数组的指针比一维数

组的指针要复杂一些。

1. 多维数组元素的地址

int a[3][4]={{1,3,5,7},
 {9,11,13,15},{17,19,21,23}};

1 3 5 7
9 11 13 15

17 19 21 23

a[0]
a[1]
a[2]

a
a+1
a+2

a[0] a[0]+1 a[0]+2 a[0]+3

行指针

列指针

a代表第0行首地址

a+1代表第1行首地址

a+2代表第2行首地址

1 3 5 7
9 11 13 15

17 19 21 23

a[0]
a[1]
a[2]

a
a+1
a+2

a[0] a[0]+1 a[0]+2 a[0]+3

行指针

列指针

行指针每加1，走一行

a+i代表行号为i的行首地址（按行变化）

*(a+i)代表什么？

1 3 5 7
9 11 13 15

17 19 21 23

a[0]
a[1]
a[2]

a
a+1
a+2

a[0] a[0]+1 a[0]+2 a[0]+3

行指针

列指针

相当于a[i]

a[0]代表a[0][0]的地址

a[0]+1代表a[0][1]的地址

a[0]+2代表a[0][2]的地址

a[0]+3代表a[0][3]的地址

1 3 5 7
9 11 13 15

17 19 21 23

a[0]
a[1]
a[2]

a
a+1
a+2

a[0] a[0]+1 a[0]+2 a[0]+3

行指针

列指针

列指针每加1，走一列

a[1]代表谁的地址？

a[1]+1代表谁的地址？

a[1]+2代表谁的地址？

a[1]+3代表谁的地址？

1 3 5 7
9 11 13 15

17 19 21 23

a[0]
a[1]
a[2]

a
a+1
a+2

a[0] a[0]+1 a[0]+2 a[0]+3

行指针

列指针

a[i]+j代表谁的地址？

1 3 5 7
9 11 13 15

17 19 21 23

a[0]
a[1]
a[2]

a
a+1
a+2

a[0] a[0]+1 a[0]+2 a[0]+3

行指针

列指针

代表a[i][j]的地址

*(a[i]+j)代表什么？ 代表元素a[i][j]

((a+i)+j)代表什么？ 与*(a[i]+j)等价

例8.11 二维数组的有关数据(地址和值)
#include <stdio.h>
int main()
{ int a[3][4]={1,3,5,7,9,11,13,15,
 17,19,21,23};

 printf(“%d,%d\n”,a,*a);
 printf(“%d,%d\n”,a[0],*(a+0));
 printf(“%d,%d\n”,&a[0],&a[0][0]);
 printf(“%d,%d\n”,a[1],a+1);
 printf(“%d,%d\n”,&a[1][0],*(a+1)+0);
 printf(“%d,%d\n”,a[2],*(a+2));
 printf(“%d,%d\n”,&a[2],a+2);
 printf(“%d,%d\n”,a[1][0],*(*(a+1)+0));
 printf(“%d,%d\n”,*a[2],*(*(a+2)+0));
 return 0;
}

 printf(“%d,%d\n”,a,*a);
 printf(“%d,%d\n”,a[0],*(a+0));
 printf(“%d,%d\n”,&a[0],&a[0][0]);
 printf(“%d,%d\n”,a[1],a+1);
 printf(“%d,%d\n”,&a[1][0],*(a+1)+0);
 printf(“%d,%d\n”,a[2],*(a+2));
 printf(“%d,%d\n”,&a[2],a+2);
 printf(“%d,%d\n”,a[1][0],*(*(a+1)+0));
 printf(“%d,%d\n”,*a[2],*(*(a+2)+0));
 return 0;
}

 printf(“%d,%d\n”,a,*a);
 printf(“%d,%d\n”,a[0],*(a+0));
 printf(“%d,%d\n”,&a[0],&a[0][0]);
 printf(“%d,%d\n”,a[1],a+1);
 printf(“%d,%d\n”,&a[1][0],*(a+1)+0);
 printf(“%d,%d\n”,a[2],*(a+2));
 printf(“%d,%d\n”,&a[2],a+2);
 printf(“%d,%d\n”,a[1][0],*(*(a+1)+0));
 printf(“%d,%d\n”,*a[2],*(*(a+2)+0));
 return 0;
}

2. 指向多维数组元素的指针变量

(1) 指向数组元素的指针变量

 例8.12 有一个3×4的二维数组，要求

用指向元素的指针变量输出二维数组各

元素的值。

Ø解题思路：

u二维数组的元素是整型的，它相当于整型变

量，可以用int*型指针变量指向它

u二维数组的元素在内存中是按行顺序存放的

，即存放完序号为0的行中的全部元素后，

接着存放序号为1的行中的全部元素，依此

类推

u因此可以用一个指向整型元素的指针变量，

依次指向各个元素

#include <stdio.h>
int main()
{ int a[3][4]={1,3,5,7,9,11,13,15,
 17,19,21,23};
 int *p;
 for(p=a[0];p<a[0]+12;p++)
 { if((p-a[0])%4==0) printf(“\n”);
 printf(“%4d”,*p);
 }
 printf("\n");
 return 0;
}

控制换行

逐个访问各元素时常用此类指针

(2) 指向由ｍ个元素组成的一维数组的指针

变量

 例8.13 输出二维数组任一行任一列元素的

值。

Ø解题思路：假设仍然用例8.12程序中的二

维数组，例8.12中定义的指针变量是指向

变量或数组元素的，现在改用指向一维数

组的指针变量。

#include <stdio.h>
int main()
{int a[3][4]={1,3,5,7,9,11,13,15,
 17,19,21,23};
 int (*p)[4],i,j;
 p=a;
 printf(“enter row and colum:");
 scanf(“%d,%d”,&i,&j);
 printf(“a[%d,%d]=%d\n”,
 i,j,*(*(p+i)+j));
 return 0;
}

行指针

a[i][j]

3. 用指向数组的指针作函数参数

Ø一维数组名可以作为函数参数，多维数组

名也可作函数参数。

Ø用指针变量作形参，以接受实参数组名传

递来的地址。

Ø可以有两种方法：

①用指向变量的指针变量

②用指向一维数组的指针变量

 例8.14 有一个班，3个学生，各学4门课，

计算总平均分数以及第n个学生的成绩。
Ø解题思路：这个题目是很简单的。本例用指

向数组的指针作函数参数。用函数

average求总平均成绩，用函数search找

出并输出第i个学生的成绩。

#include <stdio.h>
int main()
{ void average(float *p,int n);
 void search(float (*p)[4],int n);
 float score[3][4]={{65,67,70,60},
 {80,87,90,81},{90,99,100,98}};
 average(*score,12);
 search(score,2);
 return 0;
}

score[0][0]的地址

void average(float *p,int n)
{ float *p_end;
 float sum=0,aver;
 p_end=p+n-1;
 for(;p<=p_end; p++)
 sum=sum+(*p);
 aver=sum/n;
 printf("average=%5.2f\n",aver);
}

65
67
70
60
80
87
90
81
90
99

100
98

p

p_end

p+1

#include <stdio.h>
int main()
{ void average(float *p,int n);
 void search(float (*p)[4],int n);
 float score[3][4]={{65,67,70,60},
 {80,87,90,81},{90,99,100,98}};
 average(*score,12);
 search(score,2);
 return 0;
}

二维数组首行地址

void search(float (*p)[4],int n)
{ int i;
 printf("The score of No.%d are:\n",n);
 for(i=0;i<4;i++)
 printf("%5.2f ",*(*(p+n)+i));
 printf("\n");
}

65 67 70 60
80 87 90 81
90 99 100 98

p

p+2

 例8.15 在上题基础上，查找有一门以上

课程不及格的学生，输出他们的全部课程

的成绩。

Ø解题思路：在主函数中定义二维数组

score，定义search函数实现输出有一

门以上课程不及格的学生的全部课程的成

绩，形参p的类型是float(*)[4]。在调

用search函数时，用score作为实参，

把score[0]的地址传给形参p。

#include <stdio.h>
int main()
{ void search(float (*p)[4],int n);
 float score[3][4]={{65,57,70,60},
 {58,87,90,81},{90,99,100,98}};
 search(score,3);
 return 0;
}

void search(float (*p)[4],int n)
{ int i,j,flag;
 for(j=0;j<n;j++)
 { flag=0;
 for(i=0;i<4;i++)
 if(*(*(p+j)+i)<60) flag=1;
 if(flag==1)
 { printf("No.%d fails\n",j+1);
 for(i=0;i<4;i++)
 printf(“%5.1f ”,*(*(p+j)+i));
 printf("\n");
 }
 }
}

65 57 70 60
58 87 90 81
90 99 100 98

p

void search(float (*p)[4],int n)
{ int i,j,flag;
 for(j=0;j<n;j++)
 { flag=0;
 for(i=0;i<4;i++)
 if(*(*(p+j)+i)<60) flag=1;
 if(flag==1)
 { printf("No.%d fails\n",j+1);
 for(i=0;i<4;i++)
 printf(“%5.1f ”,*(*(p+j)+i));
 printf("\n");
 }
 }
}

发现不及格，赋1
若有不及格，则输出

不用flag，而用break
语句如何改程序？

8.4.1 字符串的引用方式

8.4.2 字符指针作函数参数

8.4.3 使用字符指针变量和字符数组的比较

Ø字符串是存放在字符数组中的。引用一个

字符串，可以用以下两种方法。

(1) 用字符数组存放一个字符串，可以通过数组

名和格式声明“%s”输出该字符串，也可以

通过数组名和下标引用字符串中一个字符。

(2) 用字符指针变量指向一个字符串常量，通过

字符指针变量引用字符串常量。

 例8.16 定义一个字符数组，在其中存放

字符串“I love China!”，输出该字符

串和第8个字符。

Ø解题思路：定义字符数组string，对它初

始化，由于在初始化时字符的个数是确定

的，因此可不必指定数组的长度。用数组

名string和输出格式%s可以输出整个字

符串。用数组名和下标可以引用任一数组

元素。

#include <stdio.h>
int main()
{ char string[]=“I love China!”;
 printf(“%s\n”,string);
 printf(“%c\n”,string[7]);
 return 0;
}

string string+7

 例8.17 通过字符指针变量输出一个字符串。
Ø解题思路：可以不定义字符数组，只定义一

个字符指针变量，用它指向字符串常量中的

字符。通过字符指针变量输出该字符串。

#include <stdio.h>
int main()
{ char *string=“I love China!”;
 printf(“%s\n”,string);
 return 0;
}

string

char *string;
string=” I love China!”;

#include <stdio.h>
int main()
{ char *string=“I love China!”;
 printf(“%s\n”,string);
 string=”I am a student.”;
 printf(“%s\n”,string);
 return 0;
}

string

#include <stdio.h>
int main()
{ char *string=“I love China!”;
 printf(“%s\n”,string);
 string=”I am a student.”;
 printf(“%s\n”,string);
 return 0;
}

string

 例8.18 将字符串a复制为字符串b，然后

输出字符串b。
Ø解题思路：定义两个字符数组a和b，用

“I am a student.”对a数组初始化。

将a数组中的字符逐个复制到b数组中。可

以用不同的方法引用并输出字符数组元素

，今用地址法算出各元素的值。

#include <stdio.h>
int main()
{ char a[]=“I am a student.”,b[20];
 int i;
 for(i=0;*(a+i)!='\0';i++)
 (b+i)=(a+i);
 *(b+i)=‘\0’;
 printf(“string a is:%s\n”,a);
 printf("string b is:");
 for(i=0;b[i]!='\0';i++)
 printf(“%c”,b[i]);
 printf("\n");
 return 0;
}

printf("string b is:%s\n“,b);

例8.19 用指针变量来处理例8.18问题。

Ø解题思路：定义两个指针变量p1和p2，
分别指向字符数组a和b。改变指针变量

p1和p2的值，使它们顺序指向数组中的

各元素，进行对应元素的复制。

#include <stdio.h>
int main()
{char a[]="I am a boy.",b[20],*p1,*p2;
 p1=a; p2=b;
 for(; *p1!=‘\0’; p1++,p2++)
 *p2=*p1;
 *p2=‘\0’;
 printf(“string a is:%s\n”,a);
 printf(“string b is:%s\n”,b);
 return 0;
}

Ø如果想把一个字符串从一个函数“传递”

到另一个函数，可以用地址传递的办法，

即用字符数组名作参数，也可以用字符指

针变量作参数。

Ø在被调用的函数中可以改变字符串的内容

Ø在主调函数中可以引用改变后的字符串。

例8.20 用函数调用实现字符串的复制。

Ø解题思路：定义一个函数copy_string
用来实现字符串复制的功能，在主函数中

调用此函数，函数的形参和实参可以分别

用字符数组名或字符指针变量。分别编程

，以供分析比较。

(1) 用字符数组名作为函数参数

#include <stdio.h>
int main()
{void copy_string(char from[],char to[]);
 char a[]="I am a teacher.";
 char b[]="you are a student.";
 printf(“a=%s\nb=%s\n",a,b);
 printf("copy string a to string b:\n");
 copy_string(a,b);
 printf(“a=%s\nb=%s\n",a,b);
 return 0;
}

void copy_string(char from[], char to[])
{ int i=0;
 while(from[i]!='\0')
 { to[i]=from[i];
 i++;
 }
 to[i]='\0';
}

(2)用字符型指针变量作实参

Øcopy_string不变，在main函数中

定义字符指针变量from和to，分别指

向两个字符数组a,b。
Ø仅需要修改主函数代码

#include <stdio.h>
int main()
{void copy_string(char from[], char to[]);
 char a[]=“I am a teacher.”;
 char b[]=“you are a student.”;
 char *from=a,*to=b;
 printf(“a=%s\nb=%s\n",a,b);
 printf("\ncopy string a to string b:\n");
 copy_string(from,to);
 printf(“a=%s\nb=%s\n",a,b);
 return 0;
}

(3)用字符指针变量作形参和实参

#include <stdio.h>
int main()
{void copy_string(char *from, char *to);
 char *a=“I am a teacher.”;
 char b[]=“You are a student.”;
 char *p=b;
 printf(“a=%s\nb=%s\n”,a,b);
 printf("\ncopy string a to string b:\n");
 copy_string(a,p);
 printf(“a=%s\nb=%s\n”,a,b);
 return 0;
}

void copy_string(char *from, char *to)
{ for(;*from!='\0'; from++,to++)
 { *to=*from; }
 *to='\0';
}

函数体有多种简化写法，请见主教材

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(1) 字符数组由若干个元素组成，每个元素中

放一个字符，而字符指针变量中存放的是地

址（字符串第1个字符的地址），决不是将

字符串放到字符指针变量中。

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(2) 赋值方式。可以对字符指针变量赋值，但

不能对数组名赋值。

char *a; a=”I love China!”; 对
char str[14];str[0]=’I’; 对
char str[14]; str=”I love China!”; 错

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

（3）初始化的含义

char *a=”I love China！”;与
char *a; a=”I love China！”;等价

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

（3）初始化的含义

char str[14]= ”I love China！”;与
char str[14];
str[]=”I love China！”; 不等价

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(4) 存储单元的内容

 编译时为字符数组分配若干存储单元，以存

放各元素的值，而对字符指针变量，只分配

一个存储单元

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(4) 存储单元的内容

 char *a; scnaf(“%s”,a); 错
 char *a,str[10];
 a=str;
 scanf (“%s”,a); 对

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(5) 指针变量的值是可以改变的，而数组名代

表一个固定的值(数组首元素的地址)，不能

改变。

例8.21 改变指针变量的值。

#include <stdio.h>
int main()
{ char *a="I love China!";
 a=a+7;
 printf(“%s\n”,a);
 return 0;
}

不能改为

char a[]=“I love China!”;

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(6) 字符数组中各元素的值是可以改变的，但

字符指针变量指向的字符串常量中的内容是

不可以被取代的。

char a[]=”House”,*b=” House”;
a[2]=’r’; 对

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(6) 字符数组中各元素的值是可以改变的，但

字符指针变量指向的字符串常量中的内容是

不可以被取代的。

char a[]=”House”,*b=”House”;
b[2]=’r’; 错

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(7) 引用数组元数

 对字符数组可以用下标法和地址法引用数组

元素（a[5],*(a+5)）。如果字符指针变

量p=a，则也可以用指针变量带下标的形式

和地址法引用（p[5],*(p+5)）。

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

char *a=″I love China!″;
则a[5]的值是第6个字符，即字母’e’

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

(8) 用指针变量指向一个格式字符串，可以用

它代替printf函数中的格式字符串。

Ø用字符数组和字符指针变量都能实现字符

串的存储和运算，但它们二者之间是有区

别的，不应混为一谈，主要有以下几点。

char *format;
format=”a=%d,b=%f\n”;
printf(format,a,b);
相当于

printf(“a=%d,b=%f\n”,a,b);

8.5.1什么是函数指针

8.5.2用函数指针变量调用函数

8.5.3怎样定义和使用指向函数的指针变量

8.5.4用指向函数的指针作函数参数

Ø如果在程序中定义了一个函数，在编译

时，编译系统为函数代码分配一段存储

空间，这段存储空间的起始地址，称为

这个函数的指针。

Ø可以定义一个指向函数的指针变量，用

来存放某一函数的起始地址，这就意味

着此指针变量指向该函数。例如：

 int (*p)(int,int);
 定义p是指向函数的指针变量，它可以

指向类型为整型且有两个整型参数的函

数。p的类型用int (*)(int,int)表示

例8.22 用函数求整数a和b中的大者。

Ø解题思路：定义一个函数max，实现求

两个整数中的大者。在主函数调用max
函数，除了可以通过函数名调用外，还

可以通过指向函数的指针变量来实现。

分别编程并作比较。

（1）通过函数名调用函数

#include <stdio.h>
int main()
{ int max(int,int);
 int a,b,c;
 printf("please enter a and b:");
 scanf("%d,%d",&a,&b);
 c=max(a,b);
 printf(“%d,%d,max=%d\n",a,b,c);
 return 0;
}

int max(int x,int y)
{ int z;
 if(x>y) z=x;
 else z=y;
 return(z);
}

(2)通过指针变量访问它所指向的函数
#include <stdio.h>
int main()
{ int max(int,int);
 int (*p)(int,int); int a,b,c;
 p=max;
 printf("please enter a and b:");
 scanf("%d,%d",&a,&b);
 c=(*p)(a,b);
 printf(“%d,%d,max=%d\n",a,b,c);
 return 0;
}

必须先指向，若写成

p=max(a,b); 错

只能指向函数返回
值为整型且有两个
整型参数的函数

Ø定义指向函数的指针变量的一般形式为
数据类型 (*指针变量名)(函数参数表列);
 如 int (*p)(int,int);
 p=max; 对
 p=max(a,b); 错
 p+n,p++,p--等运算无意义

 例8.23 输入两个整数，然后让用户选择

1或2，选1时调用max函数，输出二者中

的大数，选2时调用min函数，输出二者

中的小数。

Ø解题思路：定义两个函数max和min，分

别用来求大数和小数。在主函数中根据用

户输入的数字1或2，使指针变量指向

max函数或min函数。

#include <stdio.h>
int main()
{int max(int,int); int min(int x,int y);
 int (*p)(int,int); int a,b,c,n;
 scanf("%d,%d",&a,&b);
 scanf(“%d”,&n);
 if (n==1) p=max;
 else if (n==2) p=min;
 c=(*p)(a,b);
 printf("a=%d,b=%d\n",a,b);
 if (n==1) printf("max=%d\n",c);
 else printf("min=%d\n",c);
 return 0;
}

只看此行看不出调用哪函数

int max(int x,int y)
{ int z;
 if(x>y) z=x;
 else z=y;
 return(z);
}
int min(int x,int y)
{ int z;
 if(x<y) z=x;
 else z=y;
 return(z);
}

Ø指向函数的指针变量的一个重要用途是

把函数的地址作为参数传递到其他函数

Ø指向函数的指针可以作为函数参数，把

函数的入口地址传递给形参，这样就能

够在被调用的函数中使用实参函数

……
int main()
{ …… fun(f1,f2) …… }

void fun(int (*x1)(int),int (*x2)(int,int))
{ int a,b,i=3,j=5;
 a=(*x1)(i);
 b=(*x2)(i,j);
}

相当于a=f1(i);
相当于b=f2(i,j);

 例8.24 有两个整数a和b，由用户输入

1,2或3。如输入1，程序就给出a和b中大

者，输入2，就给出a和b中小者，输入3，
则求a与b之和。
Ø解题思路：与例8.23相似，但现在用一个

函数fun来实现以上功能。

#include <stdio.h>
int main()
{void fun(int x,int y, int (*p)(int,int));
 int max(int,int); int min(int,int);
 int add(int,int); int a=34,b=-21,n;
 printf("please choose 1,2 or 3:");
 scanf(“%d”,&n);
 if (n==1) fun(a,b,max);
 else if (n==2) fun(a,b,min);
 else if (n==3) fun(a,b,add);
 return 0;
 }

int fun(int x,int y,int (*p)(int,int))
{ int resout;
 resout=(*p)(x,y);
 printf(“%d\n”,resout);
}
int max(int x,int y)
{ int z;
 if(x>y) z=x;
 else z=y;
 printf("max=");
 return(z);
 }

输入的选项为1时

相当于max(x,y)

int fun(int x,int y,int (*p)(int,int))
{ int resout;
 resout=(*p)(x,y);
 printf(“%d\n”,resout);
}
int max(int x,int y)
{ int z;
 if(x>y) z=x;
 else z=y;
 printf("max=");
 return(z);
 }

输入的选项为2时

相当于min(x,y)

int fun(int x,int y,int (*p)(int,int))
{ int result;
 result=(*p)(x,y);
 printf(“%d\n”,result);
}
int max(int x,int y)
{ int z;
 if(x>y) z=x;
 else z=y;
 printf("max=");
 return(z);
 }

输入的选项为3时

相当于add(x,y)

int min(int x,int y)
{ int z;
 if(x<y) z=x;
 else z=y;
 printf("min=");
 return(z);
}
int add(int x,int y)
{ int z;
 z=x+y;
 printf("sum=");
 return(z);
}

Ø一个函数可以返回一个整型值、字符值

、实型值等，也可以返回指针型的数据

，即地址。其概念与以前类似，只是返

回的值的类型是指针类型而已

Ø定义返回指针值的函数的一般形式为

 类型名 *函数名(参数表列);

 例8.25有a个学生，每个学生有b门课

程的成绩。要求在用户输入学生序号以

后，能输出该学生的全部成绩。用指针

函数实现。

 解题思路：

u定义二维数组score存放成绩

u定义输出某学生全部成绩的函数search，它

是返回指针的函数，形参是行指针和整型

u主函数将score和要找的学号k传递给形参

u函数的返回值是&score[k][0](k号学生的

序号为0的课程地址)
u在主函数中输出该生的全部成绩

#include <stdio.h>
int main()
{float score[][4]={{60,70,80,90},
 {56,89,67,88},{34,78,90,66}};
 float *search(float (*pointer)[4],int n);
 float *p; int i,k;
 scanf(“%d”,&k);
 printf("The scores of No.%d are:\n",k);
 p=search(score,k);
 for(i=0;i<4;i++)
 printf(“%5.2f\t”,*(p+i));
 printf("\n");
 return 0;
}

返回k号学生课程首地址

float *search(float (*pointer)[4],int n)
{ float *pt;
 pt=*(pointer+n);
 return(pt);
}

 例8.26对例8.25中的学生，找出其中有

不及格的课程的学生及其学生号。

Ø解题思路：

u在例8.25程序基础上修改。

umain函数不是只调用一次search函数，而

是先后调用3次search函数，其中检查3个学

生有无不及格的课程，如果有，就返回该学生

的0号课程的地址&score[i][0]，否则返回

NULL
u在main函数中检查返回值，输出有不及格学

生4门课的成绩

 ……
 float *search(float (*pointer)[4]);
 float *p; int i,j;
 for(i=0;i<3;i++)
 { p=search(score+i);
 if(p==*(score+i))
 { printf("No.%d score:",i);

 for(j=0;j<4;j++)
 printf(“%5.2f ”,*(p+j));
 printf("\n");
 }
 }
 ……

相当于if(p!=NULL)

 float *search(float (*pointer)[4])
{ int i=0;
 float *pt;
 pt=NULL;
 for(;i<4;i++)
 if(*(*pointer+i)<60)
 pt=*pointer;
 return(pt);
}

8.7.1 什么是指针数组

8.7.2 指向指针数据的指针

8.7.3 指针数组作main函数的形参

Ø一个数组，若其元素均为指针类型数

据，称为指针数组，也就是说，指针

数组中的每一个元素都存放一个地址

，相当于一个指针变量。

Ø定义一维指针数组的一般形式为

 类型名*数组名[数组长度];
 int *p[4];

Ø指针数组比较适合用来指向若干个字

符串，使字符串处理更加方便灵活

Ø可以分别定义一些字符串，然后用指

针数组中的元素分别指向各字符串

Ø由于各字符串长度一般是不相等的，

所以比用二维数组节省内存单元

 例8.27 将若干字符串按字母顺序（由

小到大）输出。

Ø解题思路：定义一个指针数组，用各

字符串对它进行初始化，然后用选择

法排序，但不是移动字符串，而是改

变指针数组的各元素的指向。

#include <stdio.h>
#include <string.h>
int main()
{void sort(char *name[],int n);
 void print(char *name[],int n);
 char *name[]={“Follow”,“Great”,
 “FORTRAN”,“Computer”};
 int n=4;
 sort(name,n);
 print(name,n);
 return 0;
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

i=0时 执行后k变为3

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

i=1时 执行后k变为2

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

i=2时 执行后k变为3

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

void sort(char *name[],int n)
{char *temp; int i,j,k;
 for (i=0;i<n-1;i++)
 { k=i;
 for (j=i+1;j<n;j++)

 if(strcmp(name[k],name[j])>0) k=j;
 if (k!=i)
 { temp=name[i]; name[i]=name[k];

 name[k]=temp;
 }
 }
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

void print(char *name[],int n)
{ int i;
 for(i=0;i<n;i++)
 printf(“%s\n”,name[i]);
}

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

void print(char *name[],int n)
{ int i;
 for(i=0;i<n;i++)
 printf(“%s\n”,name[i]);
}

void print(char *name[],int n)
{ int i=0; char *p;
 p=name[0];
 while(i<n)
 { p=*(name+i++);
 printf("%s\n",p);
 }
}

Ø在了解了指针数组的基础上，需要了

解指向指针数据的指针变量，简称为

指向指针的指针。

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

name

p

例8.28 使用指向指针数据的指针变量。
 char *name[]={“Follow”,,“Great”,
 “FORTRAN”,“Computer”};
 char **p; int i;
 for(i=0;i<5;i++)
 { p=name+i; printf("%s\n",*p); }

F o l l o w \0
G r e a t \0
F O R T R A N \0
C o m p u t e r \0

name[0]
name[1]
name[2]
name[3]

name

p

 例8.29 有一个指针数组，其元素分别指向

一个整型数组的元素，用指向指针数据的

指针变量，输出整型数组各元素的值。

#include <stdio.h>
int main()
{int a[5]={1,3,5,7,9};
 int *num[5]={&a[0],&a[1],&a[2],
 &a[3],&a[4]};
 int **p,i;
 p=num;
 for(i=0;i<5;i++)
 { printf("%d ",**p);
 p++;
 }
 printf("\n"); return 0;
}

&a[0]
&a[1]
&a[2]
&a[3]
&a[4]

p
1
2
3
4
5

Ø指针数组的一个重要应用是作为main
函数的形参。在以往的程序中，main
函数的第一行一般写成以下形式：

 int main() 或 int main(void)
Ø表示main函数没有参数，调用main
函数时不必给出实参。

Ø这是一般程序常采用的形式。

Ø实际上，在某些情况下，main函数可

以有参数，例如：

 int main(int argc,char *argv[])

 其中，argc和argv就是main函数的

形参，它们是程序的“命令行参数”。

Øargv是*char指针数组，数组中每一

个元素(其值为指针)指向命令行中的一

个字符串。

Ø通常main函数和其他函数组成一个文

件模块，有一个文件名。

Ø对这个文件进行编译和连接，得到可执

行文件（后缀为.exe）。用户执行这个

可执行文件，操作系统就调用main函

数，然后由main函数调用其他函数，

从而完成程序的功能。

Ømain函数的形参是从哪里传递给它们

的呢？

Ø显然形参的值不可能在程序中得到。

Ømain函数是操作系统调用的，实参只

能由操作系统给出。

#include <stdio.h>
int main(int argc,char *argv[])
{ while(argc>1)
 { ++argv;
 printf(“%s\n”, *argv);
 --argc;
 }
 return 0;
}

在VC++环境下编译、连接后，
“工程”—“设置”—“调
试”—“程序变量”中输入
“China Beijing”，再运行就
可得到结果

8.8.1 什么是内存的动态分配

8.8.2 怎样建立内存的动态分配

8.8.3 void指针类型

Ø非静态的局部变量是分配在内存中的动态存

储区的，这个存储区是一个称为栈的区域

ØC语言还允许建立内存动态分配区域，以存

放一些临时用的数据，这些数据需要时随时

开辟，不需要时随时释放。这些数据是临时

存放在一个特别的自由存储区，称为堆区

Ø对内存的动态分配是通过系统提供的库函数

来实现的，主要有malloc，calloc，free
，realloc这4个函数。

１．malloc函数

Ø其函数原型为
void *malloc(unsigned int size);
u其作用是在内存的动态存储区中分配一个长度

为size的连续空间

u函数的值是所分配区域的第一个字节的地址，

或者说，此函数是一个指针型函数，返回的指

针指向该分配域的开头位置

 malloc(100);
u开辟100字节的临时分配域，函数值为其第1
个字节的地址

Ø注意指针的基类型为void，即不指向任何

类型的数据，只提供一个地址

Ø如果此函数未能成功地执行（例如内存空间

不足），则返回空指针(NULL)

2．calloc函数

Ø其函数原型为
 void *calloc(unsigned n,unsigned size);

Ø其作用是在内存的动态存储区中分配n个长度

为size的连续空间，这个空间一般比较大，

足以保存一个数组。

Ø用calloc函数可以为一维数组开辟动态存储

空间，n为数组元素个数，每个元素长度为

size。这就是动态数组。函数返回指向所分

配域的起始位置的指针；如果分配不成功，

返回NULL。如：

 p=calloc(50,4);
 开辟50×4个字节的临时分配域，把起始

地址赋给指针变量p

3．free函数

Ø其函数原型为
 void free(void *p);
Ø其作用是释放指针变量ｐ所指向的动态

空间，使这部分空间能重新被其他变量

使用。p应是最近一次调用calloc或
malloc函数时得到的函数返回值。

 free(p);
Ø释放指针变量ｐ所指向的已分配的动态

空间
Øfree函数无返回值

4. realloc函数

Ø其函数原型为

void *realloc(void *p,unsigned int size);

Ø如果已经通过malloc函数或calloc函数获

得了动态空间，想改变其大小，可以用

recalloc函数重新分配。

Ø用realloc函数将p所指向的动态空间的大

小改变为size。p的值不变。如果重分配不

成功，返回NULL。如

 realloc(p,50);
 将p所指向的已分配的动态空间改为50字节

Ø以上4个函数的声明在stdlib.h头文件中，

在用到这些函数时应当用“#include
<stdlib.h>”指令把stdlib.h头文件包含

到程序文件中。

 例8.30 建立动态数组，输入5个学生的成

绩，另外用一个函放数检查其中有无低于

60分的，输出不合格的成绩。

Ø 解题思路：用malloc函数开辟一个动态

自由区域，用来存5个学生的成绩，会得到

这个动态域第一个字节的地址，它的基类

型是void型。用一个基类型为int的指针

变量p来指向动态数组的各元素，并输出它

们的值。但必须先把malloc函数返回的

void指针转换为整型指针，然后赋给p1

#include <stdio.h>
#include <stdlib.h>
int main()
{ void check(int *);
 int *p1,i;
 p1=(int *)malloc(5*sizeof(int));
 for(i=0;i<5;i++)
 scanf("%d",p1+i);
 check(p1);
 return 0;
}

void check(int *p)
{ int i;
 printf("They are fail:");
 for(i=0;i<5;i++)
 if (p[i]<60)
 printf("%d ",p[i]);
 printf("\n");
}

 1.首先要准确地弄清楚指针的含义。指针

就是地址，凡是出现“指针”的地方，都

可以用“地址”代替，例如，变量的指针

就是变量的地址，指针变量就是地址变量

Ø要区别指针和指针变量。指针就是地址本

身，而指针变量是用来存放地址的变量。

 2. 什么叫“指向”？地址就意味着指向，

因为通过地址能找到具有该地址的对象。

对于指针变量来说，把谁的地址存放在指

针变量中，就说此指针变量指向谁。但应

注意：只有与指针变量的基类型相同的数

据的地址才能存放在相应的指针变量中。

 void *指针是一种特殊的指针，不指向任

何类型的数据，如果需要用此地址指向某

类型的数据，应先对地址进行类型转换。

可以在程序中进行显式的类型转换，也可

以由编译系统自动进行隐式转换。无论用

哪种转换，读者必须了解要进行类型转换

 3. 要深入掌握在对数组的操作中怎样正确

地使用指针，搞清楚指针的指向。一维数

组名代表数组首元素的地址

 int *p,a[10];
 p=a;
up是指向int类型的指针变量，p只能指向数

组中的元素，而不是指向整个数组。在进行

赋值时一定要先确定赋值号两侧的类型是否

相同，是否允许赋值。

u对“p=a;”，准确地说应该是：p指向a数
组的首元素

 4.有关指针变量的定义形式的归纳比较，

见主教材中表8.4。

5.指针运算

(1)指针变量加（减）一个整数

例如：p++,p--,p+i,p-i,p+=i,ｐ-=i等
均是指针变量加（减）一个整数。

Ø将该指针变量的原值(是一个地址)和它指

向的变量所占用的存储单元的字节数相加

（减）。

5.指针运算

(2)指针变量赋值

Ø将一个变量地址赋给一个指针变量

Ø不应把一个整数赋给指针变量

5.指针运算

(3) 两个指针变量可以相减

Ø如果两个指针变量都指向同一个数组中的

元素，则两个指针变量值之差是两个指针

之间的元素个数

5.指针运算

(4) 两个指针变量比较

Ø若两个指针指向同一个数组的元素，则可以

进行比较

Ø指向前面的元素的指针变量“小于”指向后

面元素的指针变量

Ø如果p1和p2不指向同一数组则比较无意义

5.指针运算

(5) 指针变量可以有空值，即该指针变量不

指向任何变量，可以这样表示：

 p=NULL;

